
EFFECTIVE THERMAL CONDUCTIVITY AND ELECTRICAL CONDUCTIVITY 

OF ANISOTROPIC SOLIDS OF LOW POROSITY 

A. D. Terekhov and E. M. Sher UDC 536.21+537.311 

Equations are derived to determine the effective thermal and electrical conductivi- 
ties of anisotropic media of low porosity. The influence of porosity on the ther- 
mal and electrical conductivities of anisotropic ternary alloys is established. 

A number of materials produced by the pressing of powders comprising anisotropic parti- 
cles is widely employed at the present time. Such materials include, in particular, ternary 
alloys of the BiaTea + SbaTea and BiaTea + Bi2Sea types [i] used in thermoelectricity for mak- 
ing the branches of thermocouples. 

On molding these materials under a high pressure, thermocouple branches with porosities 
of up to about 5%, having very anisotropic electrical and thermal conductivities, are created 
[i-41. 

Since the thermoelectric efficiency of the branches of a thermocouple is determined by 
the ratio of their electrical and thermal conductivities (z = ~2o/x), it is desirable to 
establish the influence of porosity on the coefficients x and o and hence the z values of 
these branches, which consist of particles anisotropic with respect to o and x. 

We assume that the thermal and electrical conductivity tensors Xik and Oik of the con- 
tinuous material are already known. We shall simulate the pores by ellipsoids of the form 

= 1 ,  + (i) 

where xl, xa, xs is a rectangular Cartesian coordinate system, the xl, x2, xa axes being di- 
rected along the axes of the • and ~ tensors. Thus, the quantities al, a=, aa will char- 
acterize the dimensions of the pore. We accordingly assume that the pores are formed in such 
a way that the semiaxes of the ellipsoid are parallel to the principal axes of the thermal 
and electrical conductivity tensors (Fig. i). 

The space occupied by a pore may be filled with a gas of some kind (used as an atmo- 
sphere for the pressing operation), and a certain flow of heat may pass through the pore. 
However, we shall consider that the thermal and electrical conductivities of the substances 
filling the pores are equal to zero. 

Let us determine the corrections introduced by the presence of a single pore. For this 
purpose we must determine the distortions introduced by the pore into the temperature dis- 
tribution existing in the case of a homogeneous solid. We shall execute the calculation for 
the thermal conductivity only, since the relationships for the electrical conductivity are 
of exactly the same form after simply replacing • by o. 

The general expression describing heat transfer by conduction in an anisotropic medium 
in terms of the principal axes of the tensor • under steady-state conditions takes the form 
[51 
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Fig. i. Character of the current (stream) 
lines in the presence of lens-shaped pores 
in the sample: i) Sample; 2) pore. 
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Thus, in order to determine the temperature field in an anisotropic medium containing a 
p o r e  we m u s t  s o l v e  Eq.  (2 )  s u b j e c t  t o  t h e  c o n d i t i o n  t h a t  t h e  n o r m a l  c o m p o n e n t  o f  t h e  h e a t  
f l o w  t o  t h e  s u r f a c e  o f  t h e  p o r e  i s  e q u a l  t o  z e r o .  I f  we u s e  t h e  s u b s t i t u t i o n s  [5]  

I 1 
-- -~ -o 

xi----(•215 • X , - -  I • xi'  (3) 

where i takes the values !, 2, 3, Eq. (2) transforms to 

1! ( 02T 02T 02T ) - - - - - -q .  (4) 

However, Eq. (4) is the equation of the temperature distribution created by a source 
in an isotropic medium with a thermal conductivity 

1 

z = (•215215 a .  (5) 

U s i n g  t h e  s u b s t i t u t i o n s  ( 3 ) ,  Eq.  (1)  t r a n s f o r m s  t o  t h e  f o r m  

I, (6-) - ~  § § 
b i b; b~ 

where 

2 a-~ a~ 
b, = al • b 2 = ~ • b 3 . . . .  x. (7)  

'~11 ~22 Z33 

The problem of determining the temperature field (or potential field in the case of 
electrical conductivity) in an anisotropic medium thus reduces to that of determining the 
temperature field in a homogeneous, isotropic medium. 

Let us determine the effective thermal conductivity. Let us suppose that in the ab- 
sence of a pore there is constant temperature gradient, for example, in the xl direction: 

OT 
grad T - -  - -  k 1. 

Ox 1 
(8) 
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The temperature field will then be given by the relationship 

To = klxl. (9) 

In the presence of a pore the temperature field given by Eq. (9) will be distorted. 
Since in the present case there are no heat sources anywhere except on the boundaries of the 
sample, we have q = O, and in order to determine the temperature field we must solve the 
equation 

O~T .02T ~ 02T 
ax--T + ax~ a~/  = o (lo) 

subject to the condition 

T ~ T O when x i ~ co. 

The normal component of the heat flow to the surface described by Eq. (6) is equal to zero 
(since the thermal conductivity of the material filling the pore is assumed negligible): 

aT 
Q ~ = •  . = 0 .  ( 1 1 )  

On 
However, this problem is analogous to the well-known problem of a dielectric ellipsoid 

with a dielectric constant el situated in a homogeneous dielectric with a constant e2, an 
electric field Eol being applied in the direction of the xl axis inside the latter, and the 
euqation of the ellipsoid surface being described by Eq. (6). If we thus make use of the 
solution to the ellipsoid problem given in [6] [considering that the dielectric constant of 
the medium filling the pore is equal to zero, which is mathematically equivalent to condi- 
tion (ii)], we shall have 

1 blb2b3 i" ds 
2 , (s+b~)Rs 

T = T O o ( 1 2 )  

" i 
1 _01b~b~ ds 

2 . ( s + O  DR.~ 
0 

where To is taken from (9) and 

is the parameter of a system of ellipsoids confocal with the specified ellipsoid v = 6 cor- 

responding to Eq. (6). 

The thermal flux through the surface v = const embracing the pore will then be 

_ b  2 2 
2 --b3 

I ~  lOT10V Q =--• h--" 
2 2 

- - b  1 - - b  2 

- -  h~hsdqd ~. (13) 

If there is no pore, the thermal flux through this surface will be 

2 �84 --b2 2 --b 3 

S S 1 0 T ~  h2hfl~ld~, 
Q o  = - " h--[ " o----~ 

-~ -~ 

(14) 

where ~ and ~ are the parameters of confocal hyperboloids and serve to define the position 
of the point on the ellipsoids v = const, i.e., ~, n, ~ are ellipsoidal coordinates. 
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We may write the thermal flux through the surface v = const in the presence of a single 
pore in the following way: 

_~ 2 
_ --b 3 

Q =  Xleff , h I " " O---v- 
(15) 

Thus, the ratio 

Q • eff := (16 )  
Oo • 

It should be noted that, since the dimensions of the sample are regarded as much greater 
than any of the dimensions a~, a2, aa of the pore, when calculating the correction to the 
thermal resistance introduced by a single pore we must put v >>a~, a=, as. 

Thus, bearing in mind Eqs. (12)-(16), 

• Qo 1 - - A  t ( s + b ~ )  R~ ' 
v 

where 

(17) 

A~ -~ b~b"b~a i ds 
2 . ( s + b { ) R s  

O 

For ~ ~ b,, ba, b3 we shall have 

i ds 2 1 2 1 
o "~ . . . .  "~;-- " (s + hi) R~ 3 Rv 3 u 

V 

(18) 

where 

a~ = V(b~ + ~)(b,i + ,~)(bl + ,~). 

Thus, on allowing for (17) and (18) we may write the following for the effective ther- 
mal conductivity • in the presence of only a single pore after taking account of Eq. 
(15): 

• 2 1 5  blb2ba . 1 ] 
3 1 - -  A1 v a'2 

(19) 

The volume limited by the surface v = const (for w ~al, a2, a3) is 

4 
3;,) 

-- a:v ; - .  (20) v---- 3 

In addition to this, the volume of a single pore will be 

4 4 
v o = -  aala2aa = _  ablb2b a . (21 )  

3 3 

Thus, from (19)-(21) we deduce 

2 ,  v o 1 ] 
•  • 1"--- 3--7: ~ . "'(t - -  A~) " ' (22) 
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Transforming to the coordinates x i and allowing for (3) and (5), we find that 

3 v (1 - -  A1) " 

If the sample contains not one but no pores, the corrections introduced by the individ- 
ual pores will be additive, since in the case of a low porosity we may neglect their mutual 
influence. We shall thus have 

 io. 11112o0 i ][2 ij 
-3- " o (1 A1) -n  =x lx  l ~ - v o n  o ~  , (23) 

- -  (1 - -  A0 

where no = n/v is the number of pores in unit volume. However, since B = vono, we shall 
finally have 

Xlef~  Xn [ 1 - 2 " 3  (1 --~ A0 ]. (24) 

If the temperature gradient is directed along the x i axis, then for • ieff we shall 
clearly obtain 

= x~i [ 1 - -  2 Xieff 
L 3 

0] 
t - - A  i ' (25) 

where 

A~ = blb~bn [ dv 

2 2 o(b~+v) R,, 
(26) 

It should be noted that the condition of low porosity corresponds to the equation 2/s" 
[6/(I--A i) ] << i. 

All the formulas for the electrical conductivity ~ may be obtained from (24) and (25) 
if we replace • by ai, and there is therefore no need to present them in detail at this 
point. 

It should be noted that a number of authors has considered the question of the effec- 
tive electrical conductivity [7] and dielectric constant [8] of a heterogeneous system. The 
system which these authors considered consisted of an isotropic conducting medium (or iso- 
tropic dielectric) containing embedded spherical particles with a different electrical con- 
ductivity (or dielectric constant), the volumetric concentration of the spherical particles 
(or the porosity if the spheres are regarded as pores) being low. Clearly, the mathematical 
formalism for determining the effective thermal and electrical conductivities is exactly the 
same as for the dielectric constant of such a heterogeneous system. 

If the electrical conductivity of the dielectric constant of the spherical particles is 
equal to zero, the expressions for the effective values of these quantities (in terms of the 
thermal conductivity) given in [7, 8] take the following form: 

Xeff= • (1 - -  c~), (27) 

where c is a numerical coefficient approximately equal to unity (c ~ I). 

The value of this coefficient depends to some extent on the means of averaging. Compar- 
ing (27) and (25), we see that Eq. (25) may be regarded as a generalization of the equations 
proposed in [7, 8] for the case of anisotropic media. 

Let us consider the case in which x11 = ~22 = • and al >a2 >as. Since A~ # A2 # A3, 
it follows from (24)-(26) that Xleff # ~2eff # ~3eff' Thus, anisotropy of the thermal and 
electrical conductivities arises in this case as a result of the different cross-sectional 
areas of the pores in different directions. This explains the appearance of anisotropy in 
the pressed samples of [2-4]. 
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Using Eq. (25) we may estimate the anisotropy which arises from the different cross- 
sectional areas of the pores in different directions. In pressing thermocouples from the 
ternary alloys indicated above, the porosities were usually less than 5% [i, 2]. 

We direct the x3 axis parallel to the pressing direction. Since in the course of the 
pressing operation all the directions perpendicular to the pressing direction are equivalent, 
we may consider that a: = a2. In view of the strong cleavage properties of Bi2Te3, the pow- 
der particles from which the thermocouples are pressed assume a disk-like shape. The ratio 
of the thickness of such a disk to its diameter is approximately equal to 1/3. We shall con- 
sider that the pores have the same shape, i.e., a~/a3~3. Neglecting the influence of the 
pores on the thermal and electrical conductivities in the direction of the x~ and x2 axes 

(i.e., considering that • = • = ~ =• ~eff and a~ = o=2 = ~ = O~eff) from Eq. (25) we 
deduce 

A~ _ •  ( Imff--ff2eff  _ A~ 

~:t eff ~x eff G1 elf ~ eff 
- -  < 0.03. 

That is, the degree of anisotropy which may arise as a result of the presence of lens- 
shaped pores is less than 3%. Actually, according to [4] 

A• Aft 
.~,0.08 and - - ~ - ~ 0 . 5 ,  

•  ~ e f f  

while, according to [2], A~/O~eff~0.8. 

We thus see that, first, the degrees of anisotropy of the thermal and electrical conduc- 
tivities are not equal to one another and, secondly, they may be greater than our own value 
of 3%. 

We may thus conclude that the observed anisotropy cannot be explained by porosity alone, 
and another explanation is required for the observed effect, as, for example, in [9]. 

It is interesting to study the effect of porosity and pore shape on the ratio o/• of 
anisotropic solids and hence the efficiency of the thermocouples. 

Let the x3 axis lie in a direction in which the ratio of the coefficients o/• has its 
lowest value, i.e., the efficiency of the thermocouples reaches a minimum. It is then quite 
easy to show that the ratio 

2 
I__ __ ~ 

ff~cff __ ff33 3 I -- A 3 (s) > ~ 

2 13 ~2 x~ eff • 1 - -  -- �9 
3 1 - -  A2 (• 

Thus, the existence of porosity increases the efficiency of an anisotropic thermocouple 
in the direction in which its value is lowest. This increment is greatest (assuming constant 
porosity) for a lenticular pore shape, i.e., a~, a2 ~ aa. In the limiting case of large 
porosity the presence of lenticular pores may increase the ratio o/• corresponding to the 
worst direction until it reaches the value of o/• corresponding to the best. 

From the physical point of view this effect in fact reduces to the organization of the 
thermal flux and electrical current by the lenticular pores in the direction in which o/• 
reaches its maximum (Fig. i). Lenticular pores may be created in an anisotropic substance, 
for example, by extrusion through an elliptical (or severely "flattened") aperture. 

NOTATION 

z, thermoelectric efficiency; ~, electrical conductivity; • thermal conductivity; a, 
thermo-emf; T, absolute temperature; q, total rate of heat evolution in unit volume of the 
crystal; dT/dn, temperature derivative along the normal to the pore surface; hl, h2, h3, Lam~co- 

efficients;• • • and oleff , O2eff , O~eff,effective thermal and electrical con- 
ductivities of the porous material in the direction of the xl, x2, x3 axes; B, porosity; 

Ai(o) is obtained from Eq. (26) by substituting ~ for z; • aik, tensor components of ther- 
! 

maland electricalconductivities (i, k = i, 2, 3); • , effective thermal conductivity al- 
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11 lowing for the influence of a single pore in coordinates X i in the X, direction; • ef- 

fective thermal conductivity allowing for the influence of a single pore in coordinates x i 
in the x, direction. 
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DETERMINATION OF THE COEFFICIENT OF THERMAL CONDUCTIVITY BY 

TWO-POINT PROBING OF THE SPECIMEN SURFACE 

A. N. Kalinin UDC 536.2.08:620.179 

A comparison method of determining the coefficient of thermal conductivity which 
permits direct measurement on specimens of arbitrary geometry without their de- 
struction is elucidated. Experimental results on realization of the method are 
presented. 

Methods to determine the coefficient of thermal conductivity, based on surface heat 
probing of the specimens, are of great practical interest. The main advantage of such meth- 
ods is the possibility of conducting measurements on specimens of arbitrary geometry, for 
example, on fabricated items, without their destruction. 

A number of instruments which solve this problem to some extent is described in [I]. 
Underlying the instruments is the principle of point heat probing of the specimen surface 
and recording the temperature difference at two points of the probe, which characterizes the 
heat exchange between the probe and the specimen across the zone of their continuity in an 
almost stationary mode. The coefficient of thermal conductivity is determined by a compari- 
son with the results of similar meausrements on standard specimens with a known thermal con- 
ductivity. Hence, such instruments have been called thermal comparators. One of the most 
successful, which yields the possibility of reading the coefficient of thermal conductivity 
directly on the scale of a recording device, is the thermal comparator consisting of a bulk 
Constantan module and a thin rod standing off therefrom, whose end is in thermal contact with 
the specimen surface. A measure of the thermal conductivity is the temperature difference be- 
tween the end of the rod in contact with the specimen and a preheated Constantan module at a 
higher temperature compared to the specimen temperature, recorded by using a differential 
thermocouple in the steady-state mode. 
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